|
In mathematics, more specifically in functional analysis, a K-space is an F-space such that every extension of F-spaces (or twisted sum) of the form : is equivalent to the trivial one〔Kalton, N. J.; Peck, N. T.; Roberts, James W. An F-space sampler. London Mathematical Society Lecture Note Series, 89. Cambridge University Press, Cambridge, 1984. xii+240 pp. ISBN 0-521-27585-7〕 : where is the real line. ==Examples== *Finite dimensional Banach spaces are K-spaces. *The spaces for are K-spaces.〔 * N. J. Kalton and N. P. Roberts proved that the Banach space is not a K-space.〔 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「K-space (functional analysis)」の詳細全文を読む スポンサード リンク
|